
I

.

COMPUTATIONAL ELECTROMAGNETIC AND
SUPERCOMPUTER ARCHITECTURE

T’. Cwik

1.1
1.2
1.3
1.4
1..5
1.6
1.7
1.8

Introduction
Computer Architecture
Problem Decomposition
Finite Difference Time Domain
Finite Element Decomposition

Decomposition

Integral Equation Decomposition
Software-Assisted Decomposition
S u m m a r y /

Acknowledg~ments
References

k

–l–

2 I. Computer Electromagndics and Supcrcomputcr Architccturc

1 . 1 I n t r o d u c t i o n

The tools used in clcctromagnctic cnginccring are derived from
many branches of science and technology. !l’he final design and imple-
mentation of an antenna component or low radar cross-section (RCS)
object are typically the result of combining analytical methods, com-
putational techniques, and experimentation. Arguably, computational
tcehniques, as well as experimentation, have made the greatest progress
over the last decade because they are both based on advances made
in semiconductor technology, VLSI packaging, and computer architec-
ture. These advances have been especially pronounced in the dcvcl-
opmcnt of microprocessor power. Fig. 1.1 is a plot of the MFIJOP
performance over time needed to complete the I,U decomposition of
a matrix of order 1000, a common floating-point algorithm. The dra-
matic increase in performance over the last decade for microprocessor
computations is compared with that for the supercomputcr computa-
tions. This performance, the projcctcd performance, and a number of
other issues such as cost and the inherent physical limitations in cur-
rent supercomputer technology have naturally led to parallel supcr-
computers an ensemble of intcrconncetcd microprocessors. Current] y,
hundreds to thousands of topline microprocessors are interconnected
to give overall performance rivaling and surpassing that of conventional
supcrcomputcrs for a variety of physical simulations. Similarly, smaller
numbers of the powerful vector processors are combined in parallel to
achieve greater performance, but the ultimate numbers of these pro-
cessors which can be combined is limited to far fewer than the nutnbcr
of microprocessors. In this chapter, an overview of computer architce-
turc, as well as the application of parallel computer architecture to
the solution of electromagnetic scattering problems will be outlined.
IIceause the majority of the material in this volume involves the use
of parallel computers composed of many microprocessors, the review
material in this chapter will be mainly directed to those machines.
Spceifically, the decomposition, or ‘breaking-up’ of calculations so as
to exceute concurrently on a number of processors wjll be presented
for diflercnt electromagnetic techniques.

Initially, a short summary of relevant computer architecture is pre-
sented as background to the subsequent discussion. After the int roduc-
t ion of a programming model for problem decomposition, spceific de-
compositions of finite difference time domain (FDTD), finite element,

1.2 Computor Architecture 3

LU DECOMPOSITION (1000X 1000) ,
10000

+~
1000

NEC-SX
CRAYY-MP

CRAY 2
CRAY X-MP

1 0 0 ,

g 1860
~ 10=

k
1 /

0.1

0.01 1 r ,

80 82 84 86 88 90 92
YEAR

Figure 1.1 Evolution of floating-point performance for microprocessors
and single processor supercomputers.

and integral equation solutions to Maxwell’s equations are presented.
The paper concludes with an outline of possible software-assisted de-
composition methods and a summary. ,

1 . 2 C o m p u t e r A r c h i t e c t u r e

Before examining the methods for mapping a given formulation of
a scattering problem onto a parallel machine, it is necessary to exam-
ine different computer architectures from the perspective of the user.
A much-referenced taxonomy of computer architectures was given by
Flynn [2]. A hierarchical model of computer organization was presented
in terms of instruction streams and data streams. ‘l’his qualitative hi-
erarchical model consisted of four categories:

4 I. Computer Elcctromagnetics and Supercomputcr Architecture

(1)

(2)

(3)

(4)

Single instruction stream, single data stream organization
(SISD), which corresponds to the sequential execution of sin-
gle instruction sets on single streams of data. Naively, conven-
tional sequential computing falls into this category.
Single instruction stream, multiple data stream (SIMII) or-
ganization, which corresponds to the identical instruction set
simultaneously operating on multiple data sets, such as in an
array processor.
Multiple instruction stream, multiple data stream (MIM1))
organization, which corresponds to different instruction sets
operating on diflercnt data sets simultaneously. Many current
parallel machines obviously fall into this category.
Multiple instruction stream, single data stream (MISD) orga-
nization, which is a category that completes the hiearchary
but does not have a useful implementation.

An organization treed on instruction and data streams is but onc
broad computer classification available. A second simplified classifi-
cation is based on the number of processors and the distribution of
mcrnory. Fig. 1.2 shows a breakdown of machines into shared- and
distributed-memory categories. A shared-memory machine consists of
a small number, perhaps 1 to 64, of powerful processors, addressing
a large bank of high-speed memory. Cray, NRC, and the Alliant com-
panies, among others, make machines in this category. Distributed-
memory machines consist of a larger number of processors and associ-
ated memory. Processors can be interconnected into various machine
topologies the hypcrcube and tw~dimension mesh topologies are com-
mon, A hypcrcube topology consists of processors that arc situated on
the corners of an n-dimensional cube, This connectivity is optimal in
the sense that there are only n cables connected to each processor and
there is a maximum of n hops necessary to communicate data between
any two processors. As communication hardware advances, this topol-
ogy is giving way to mesh topologies. Distributed-memory machines
are typically further divided into coarse- and fine-graincd machines,
depending on the number of processors and the amount of memory
attached to each processor. Coarse-grained machines, which typically
operate in MIMD mode, can have between 8 and 4000 processors, with
each processor able to address 4 to 64 Mbytes of slower access memory.
Memory addressing exists only between a processor and its attached
memory, termed multiple addressing. For one processor to address an-

1.2 Computer Architecture

SIMPLIFIED MACHINE ARCHITECTURE

ml IIu ; u
co

w
f ‘*’ ;

ccn a c1

~SHARED M E M O R Y 1

COARSE GRAIN FINE GRAIN

IlsT~-D

Figure 1.2 Simplified diagram of machine architecture categories

other’s memory, communication of the data between the processors is
necessary. Intel and NCubc companies, for example, build machines
in this category. The fh-grained machines, which typically operate in
SIMI) mode, complete the spectrum, consisting of between 4000 and
128,000 simple processors addressing perhaps between 1 and 32 kbytes
of slower access memory. Thinking Machines is the prime example of
a company building machines in this category.

Though these models are useful in visualizing the organization of
diflercnt machines, they are oversimplified because any one architecture
can exhibit aspects of several categories. For example, Cray and NEC
machines, general] y considered shared-memory machines, have a rnul-
tiprocessor capability that allows each processor to address a number
of memory banks (16 to 512) through a crossbar switch. The different
processors issue separate instructions operating on data in memory
that can be described as being distributed; therefore, the processors

6 I. Computer Electromagnctics and Supcrcomputer Architecture

arc operating in MIMII mode. Similarly, any processor in the above
categories may incorporate pipelining, i.e., the same instruction is op
crating on a multiple data stream in a ‘ipipe,’) a S1 MI) operation. A
useful overview of these concepts is given in [3, Chapter 2]. A more gen-
eral description of machine organization can bc found through the con-
cepts of processor clusters and hierarchical memory [4]. In this model,
clusters of distributed-memory processors can be connected together
through a common bank of shared memory. Processing within clusters
is performed simultaneously, with data being shared globally through
the common memory banks, This organization allows memory to have
a shared address space, though physically it is distributed among the
processors. Currently, parallel processing is moving in the direction
of machines containing thousands of processors accessing distributed
memory through shared or multiple addressing. This paper focuses on
computation performed on distributed-memory machines with mul ti- .
plc addressing. The central issue from the user’s viewpoint is how to
perform the calculations efficiently when the memory is distributed.
This leads directly to the issue of problem decomposition, i.e., how to
break up the problcm to exploit the power of the cnscmb]c of proces-
sors efficiently. Ideally, the programmer should not have to decide this
issue; the system software, e.g., the compiler, should accomplish the
task. Currently, this software dots not exist, and it appears that in
the near future, the user will only bc assisted by high-level software in
breaking up the problcm at hand.

1 . 3 P r o b l e m D e c o m p o s i t i o n

Before a specific decomposition for each of the three scattering
formulations is examined, a general programming model will bc intro
duced [4, 5]. The problcm domain is decomposed into grains, with each
grain corresponding to a single processor and its associated memory.
Since this work examines coarse-graincd machines, the memory can
currently range up to 64 Mbytes at each processor, an amount of space
that, for example, can store a 64-bit complex matrix of order 2000. It
is essential that the grain size be fairly constant between processors.
An unequal grain size, termed load imbalance, will lead to an imbal-
ance in computation between processors, reducing the c~lcicncy of the
ensemble computation since some processors will be idle, waiting for

1.3 Problem Decomposition

others to complete their calculations.

The problem domain can be described as being regular or irreg-
ular, depending on the structure of the data that arc mapped onto
the processors. The FDTD formulation on a Cartesian grid is highly
regular since the data electric and magnetic field values, as well as the
material parameters are uniformly distributed. An integral equation
solution resulting in a dense matrix is also highly regular, whereas the
finite clement formulation leads to an irregular problem domain due to
a nonuniform mesh used to discretizc the fields and geometry.

Another u,scful property of the three scattering formulations, as
WCII as many other physical problems, is that they arc loosely syn-
chronous [5]. This is understood to mean that each processor is per-
forming calculations on its own data, but must regularly stop and
communicate needed data to other processors, therefore synchronizing
the overall calculation from time to time. This implies that the calcu-
lations are not rurming in lockstep, i.e., each instruction is executing
simultaneously as in SIMI) mode, or, oppositely, the calculations are
not totally independent and can be performed asynchronously, never
needing to synchronize. Loosely synchronous calculations fit well into a
MIMI) architecture. A related characteristic is that each processor ex-
ecutes an identical copy of the code used in the simulation, but at any
given time, different processors will be executing different instructions
because of different data dependencies. The processors will synchronize
when data must be communicated between one or more processors to
complete the next stage of calculation. For example, in an LU factoriza-
tion algorithm with partial pivoting, the pivot row must be broadcast
from the processor it resides in to all other processors so it can be used
in the next stage of reduction. The communication requires physically
moving the data between processors and produces overhead, since cal-
culations are blocked waiting for the data to be sent and received. This
overhead reduces the efficiency of the ensemble calculation.

The last characteristics to be defined are necessary in quantify-
ing machine performance. When a problem is solved on various-sized
paraHcl machines, fixed-grain and fixed-size problems can be defined.
Fixed-grain problems refer to scaling the size of the problem geometry
so that the amount of data in each processor is fixed. This scaling lies at
the heart at parallel processing because the addition of more and more
processors allows the solution of successively larger problems. The sec-
ond scaling, fixed size, refers to the solution of a fixed-size problcm on

8 I. Computer Electromagnctics and Supcrcomputcr Architccturc

successively larger machines. The overall time needed to complete a
computation will decrease as the machine size increases, but machine
e~lciency decreases since the ratio of communication to computation
goes up as parallel portions of the algorithm are spread over more
and more processors. A point of diminishing returns is reached where
adding processors does not speed up the calculation.

Ih-om the above discussion, it is recognized that the goal of prob-
lem decomposition is a balance of data and computation that reduces
the amount of communication needed. Iioad balance and minimal com-
munication give the highest eficiency and extract the greatest perfor-
mance from a parallel machine.

1.4 Finite Difference Time Domain Decomposition

The first solution to Maxwell’s equations, trriehy examined in this
chapter, uses the FDTD method to calculate fields on a Cartesian
grid. Because the electric and magnetic fields, as well as material pa-
rameters, are discretized onto a regular grid, decomposition onto a
distributed-memory machine is relatively straightforward and uses the
most intuitive of the three solution methods described in this chapter.
The essential property of the decomposition for this method is the reg-
ularity of the spatial grid for irregular discrctizations of the FDTD
solution, a decomposition method would be different and not as simple.

‘I’he FDTD algorithm [6,7] uscs a leapfrog scheme in time and
space to follow the evolution of electric and magnetic fields in the
computational domain, This domain, consisting of the scatterer and
some amount of free space, is gridded along Cartesian coordinates into
unit cells and is truncated at planar boundaries into a box. Spatial
derivatives of Ampere’s and Faraday’s laws are accomplished by 2-
point centered differences on a staggered grid. Magnetic field points
are staggered between the electric field points that lie on the midpoint
of unit cell boundaries. At the boundaries of the computation box, an
approximation of the Sommerfeld radiation condition is enforced. The
same 2-point centered difference is used to perform the time derivatives
on Maxwell’s curl equations, therefore requiring that the electric and
magnetic field points be staggered in time by one-half of a time step.
Throughout the computational box, start,ing from time zero, the fields
are advanced, updating them in time and space until a steady-state

1.4 Finite Difference Time Domain Decomposition 9

solution is found. At the boundaries of the computational box, the
approximate radiation condition must also be enforced, requiring extra
computation for those field points on the boundary. Similarly, the RCS
is computed from the field values lying on a closed surface surrounding
the scatterer. The RCS may be calculated at each time step or after
some number of steps.

As outlined in Section 3, problem decomposition strives to cre-
ate an even balance of data among processors while ~nirl imizing the
amount of data that must be communicated. The following FIYI’1) de-
composition, which was reported in [8], creates this balance. Major
elements of the decomposition arc: 1) dividing the data among pro-
cessors, 2) performing the field updates and communicating data as
needed, 3) enforcing the approximate radiation condition at computa-
tional boundaries, and 4) computing the RCS on data that are divided
among the processors. Decomposition of the field and geometry data
is easily accomplished by successively dividing the mesh into equal-
ized blocks and storing the data of each block in a separate processor.
Keeping in mind the fact that field updates only need local informa-
tion, i.e., one component of the field will be updated by a 2-point center
difference of field values at the nearest neighbors, communication will
only occur at block boundaries. It is useful to store these blocks in
adjacent processors to minimize the distance data must bc commu-
nicated. This storage maps naturally onto a hypcrcube topology. For
a two-dimensional mesh topology, restricting the divisions to two of
the three spatial dimensions will create blocks that map onto adja-
cent processors, thereby minimizing the communication path. Fig. 1.3
shows one slice of grid mapped onto four processors. Only the EZ, HY,
and IIZ components of the fields are shown; arrows indicate the up
dating of the 13x component of the field. For a field point interior to a
block, all information needed for the update is local to the processor.
For a field point at a block boundary, field values in an adjacent block
are needed. To expedite communicating these data, field values along
a block boundary are duplicated in adjacent processors, and the entire
set of values is communicated as needed. Similar figures can be drawn
for the Ey and Ez components, as WCH as for the three components
of 11,

Enforcement of the approximate radiation condition requires extra
computation at those field points residing on the computational box
walls. These field points are obviously not load-balanced because they

10 I. Computer Elcctromagnetics and Supcrcomputer Architecture

● E..

o Hy

OHZ

Node O
. .

-—. - .._. Node 1

Figure 1.3 Decomposition of a FDTD grid among four processors. Arrows
indicate the magnetjc field components used to update the 12x component
within tho processors and at the boundaries of the processom (from [8]).

reside in only those processors that contain the box boundary. While
these processors are performing the radiation condition enforcement,
others sit id] y, thereby lowering the efficiency of the overall calculation.
Similarly, the RCS calculation is performed on a set of field points that
surround the scatterer. These field points are not load-balanced and,
as with the radiation condition enforcement, the efficiency is lowered
in this part of the calculation.

Code performance for various problems is presented in [8]. The
central result is that field updates, not including communication of the
block boundary field values, comprise over 90in the field update is only
a small fraction of the code because of the advantageous property of

1.5 Finito Element Docompositjon 11

volume to surface scaling. Field update calculations are represented by
the volume of data in a block, while communication only involves the
data residing on the surface of the Mock. For large blocks, this ratio
is large and the amount of time needed for communication is small.
Similarly, radiation condition enforcement and RCS calculations are
a small fraction of the total time of the code, and even though they
arc relatively incfflcient, t}lcy do not lower the overall ef%ciency of the
computations greatly. Overall cfflcicncy can be 95% for scaled FDT1)
calculations.

1.5 Finite Element Decomposition

AS a means of breaking away from using a regular grid to model .
arbitrarily curved structures, the finite element method using unstruc-
tured gridding is used to solve Maxwell’s equations. Because of the
unstructured grid, the problem domain is irregular. This domain irreg-
ularity, as well as the sparse matrix that results from discrctization,
leads to more demanding methods of problem decomposition.

A finite element solution begins with the generation of a solid-body
model of a scatterer and the generation of a fini tc element mesh. As in
the FDTD solution, grid nodal points are generated within penetrable
regions of the scatterer and in some free-space region around the scat-
terer. This grid differs from the FDTD grid in that it is unstructured,
conforming to the scatterer, transitioning between different densities in
different parts of the computational domain (Fig. 1.4). Finite elements
of some shape are meshed between nodal points, modeling the electric
or magnetic fields to some degree of smoothness depending on the or-
der of finite element used. At the boundary of the computational mesh,
an approximate boundary condition is applied locaHy to truncate the
fields.

Once the mesh is generated, a complete spatial approximation of
the fields, except for the complex field amplitudes of each finite ele-
ment nodal point, is specified. These complex amplitudes are found
from the solution of a “weak form” of the wave equation [1 O]. For this
discussion, the key point of this integral equation is that interactions
between field values modeled by the finite element basis functions are
local. The linear system consists of equations whose unknowns are the
field amplitudes, and cocflicients are the integrals of overlapping fi-

12 I. Computer Eloctromagnctics and Supercomputer Architecture

nite elements calculated from the weak form of the wave equation.
The source, or right-hand-side vector, is known and proportional to
the incident field. When written as a matrix equation, the matrix can
quickly bc seen to be extremely sparse since matrix entries correspond-
ing to nonoverlapping finite elements are identically zero. The number
of nonzero entries in a row will bc less than 100, while the matrix
rank can be over 100,000. Since the generation of matrix entries is a
relatively straight forward process, the bulk of computation falls to
sparse matrix solution algorithms, several types of which are available
for sequential calculations [2,1 1],

Several steps must be considered in a parallel decomposition for
the finite element solution. Data associated with the irregular mesh
are divided up and stored among the processors, sparse matrix entries
are calculated and also stored, the approximate boundary condition is
enforced at those nodes residing on the computational mesh boundary,
the sparse matrix system is solved, and finally the RCS is calculated.
Because the integral associated with a matrix entry only requires 10
cal information, this calculation is completd within each processor
with no communication between processors needed. Boundary condi-
tion enforcement, as WC]] as the RCS calculation, is nearly identical
to those in the FDTD calculation and suffers similar load imbalances
and loss of performance. Yet, as in the FDTD solution, they are also
a small fraction of the overall computation so they do not effect the
overall code performance greatly [1 2]. The central issues in the finite
element decomposition are then the mesh generation and storage onto
the parallel machine, and the sparse matrix equation solution. Cur-
rently, commercial y available mesh generators are typical] y used to
model three-dimensional scat terers. They provide the graphical user
interfaces necessary to model arbitrary bodies and organize the large
amounts of data generated. These data are stored and ready for use
by the finite element code.

Decomposition of the large amount of mesh data among the pr~
cessors must be accomplished before calculation of the sparse matrix
ent rics begins. Because the location of non zero entries in the matrix
is directly related to the mesh the nonzero entries in a column corre-
spond to the overlap of one finite element with all other finite elements
it is efficient to divide the mesh spatially into a number of parts equal
to the number of processors in use. In [12], an algorithm known as
recursive inertial partitioning is used to successively break the mesh

1.5 Finite Element Decomposition 13

Figure 1.4 13xamplc of a finito-clcmcnt mesh illustrating an irregular
problem domain.

into parts that contain roughly equal numbers of nodal points and
have minimum surface area. Equalizing the number of nodal points
will cause a balance of sparse matrix entries among processors as well
as a balance of the amount of comput ation needed to generate the en-
tries. Minimizing the surface area will result in generally minimizing
the amount of communication needed in the solution algorithm since
communicated data is proportional to the surface of the blocks.

Two different types of algorithms have been used to solve the
sparse system of equations. The first type, iterative algorithms, par-
allelizes relatively easily and scales well as the problem size increases,
whereas the second type, direct algorithms, requires more effort to par-
allelizc and has higher operation counts than the iterative algorithm.
An iterative solution seeks to minimize the error in a defined func-
tional (say, the residual) by successively updating the solution vector
in a prescribed manner. It has the useful property of only working
on the nonzero entries of the matrix equation, generating no new ma-
trix elements. The algorithm revolves around matrix-vector multiplies
and dot products that can be computed relatively easily in parallel.
Each processor performs the needed operation on the data in its own

14 I. Computer Electromagnetic and Supercomputer Architecture

memory, and these partial vectors or scalars are globally combined in
a communication step. Performance of this type of algorithm can be
found in [12].

Direct, solvers decompose the original sparse matrix into lower and
upper triangular sparse matrices (LU decomposition), which are then
used to solve the system of equations, Several factors must be con-
sidered in a parallel direct solver. First, if an algorithm is used that
requires as input only the storage of nonzero matrix entries, it will
generate extra nonzero matrix entries in the computation of the upper
and lower triangular decomposition (matrix fill-in). There are well-
understoo.d sequential algorithms that minimize fill-in by reordering
the matrix at each step of reduction according to some numerical cri-
terion (e.g., see [13]), The reordering, though, would require commu-
nication of data between processors on a parallel machine, as well as
continuous keeping of a balance of data between processors as the ma- “
trix entries are reshufllcd a process termed dynamic load balancing.
This communication can lead to considerable overhead, reducing the
efficiency of computation.

It is possible to renumber the nodal points of the original finite
element grid to create a banded structure where nonzero matrix entries,
as well as some number of zero matrix entries, are stored. The banded
matrix system can be decomposed and stored using methods similar
to the recursive inertial partitioning scheme, The LU decomposition
commences, filling in a number of the zero entries as the algorithm
proceeds [14]. Depending on the original grid numbering scheme, the
number of zero entries that must be stored will vary, and in general,
memory requirements will be greater for the banded solver.

Different parallel partitioned solvers are also being developed
[11, 12, 15]. These algorithms partition the matrix into blocks and com-
plete a solution in two steps. In the first step, factorization are com-
puted independently on blocks of the matrix stored in each proces-
sor. Matrix entries interior to a block are separated from boundary
or “shared” entries, an operation requiring some renumbering of the
nodal points. After the individual factorization are complete, data due
to the shared nodes are communicated and combined, and additional
computation completes the solution. The process of communicating
and combining the data may require some additional data redistribu-
tion to achieve load balance, an additional overhead.

The different solution algorithms have differing performance and

1.6 Integral Equation Decomposition 15

memory demands on parallel machines. Iterative algorithms have the
smallest storage requirements and the greatest performance, but can
suffer due to the lack of convergence to accurate solutions when ap-
plied to various scattering geometries. Indeed, the convergence dificul-
tics cncounterd in the application of iterative soiution algorithms to
integral equations, can be exacerbated in the sparse matrix solutions
of the wave equation. As with dense matrix methods, useful prcco~l-
ditioners that arc not overly costly have also not been easily found.
On the other hand, the various direct methods can consistently pr~
duce accurate solutions, and one challenge in the near term is to find
efllcient implcrncmtations of these algorithms.

The last point to bc considered in a parallel finite element decom-
position is the input of the large amount of mesh data into the parallel
machine, Currently, the amount of time necessary to read these data
can bc quite high, at times equalling or surpassing the time needed
to compute a solution, Part of this overhead is simply due to the fact
that the development of input/output technology to the processors is
relatively immature and advances in hardware and software will re-
duce the problcm. A more encompassing solution is to move the step
of mesh generation onto the parallel machine to both realize the ma-
chine’s performance and eliminate the need to input the large amount
of mesh data.

1.6 Integral Equation Decomposition

The last solutjon of Maxwell’s equations considered in this intro-
duction is an integral equation method. In the previous two meth-
ods, problem decomposition was accomplished by spatially dividing
the meshes among processors. In the FDTD solution, geometry data
and the electric and magnetic field values were divided and stored. In
the finite clement solution, geometry data and the sparse matrix entries
that arc directly related to the structure of the mesh were divided and
stored. In an integral equation solution, the data to be decomposed are
not the variables attached to the mesh, but rather data derived from
the mesh, namely the dense impedance matrix. As will be outlined, the
mesh data resjde in all processors, and dividing up the dense matrix
entries achieves a load balance of data and computation.

T}lis section will examine the PATCI1 [16] method of moments

16 I. Computer Elcctromagnetics and Supercomputer Architccturc

code, a discretization of the electric field integral equation (EFIE) for
conducting objects of arbitrary shape. Solid modeling of the physical
object is accomplished using a mesh generator that tessellates the ob
jcct’s surface into triangular patches. This is the mesh that all other
information is derived from. Currents on the object are modeled by
pairs of the subdomain triangular patches, a technique that results in
a current reprcsentat ion free of line or point charges [17]. The PATCI 1
code, as with any integral equation code, can be broken into five dis-
tinct units, which are examined separately. They consist of 1) a ge-
ometry construction sect ion, i e., an algorithm that sorts through the
input mesh data and defines connectivity for the triangular patch basis
functions, 2) a matrix fill routine, 3)the matrix factorization into an
LU decomposition, 4) the solution of the factored matrix equation for
one or more right-hand-side vectors, and 5) calculation of observable
quantities such as RCS or near-field data.

The dominant computation in the integral ~uation solution is
found in the matrix fill and matrix factorization components. Ma-
trix fill consists of computing each of the N2 matrix entries (N is
the matrix order, equal to the number of basis functions). An indi-
vidual computation is, in general, a four-dimensional integration a
tw~dimensional integration to find the fields from the current, and a
second two-dimensional integration of this field and a testing function
computing the “moments” or matrix entries. In the PATCI I code, ap-
proximations are made to simplify these integrals. Matrix factorization
consists of performing an LU decomposition using standard Gaussian
algorithms that include partial pivoting for numerical stability.

The parallel decomposition of the integral equation solution will
only examine scaled problems (Fig. 1.5). Fixed-size problems and fur-
ther analysis of the scaled problem results can be found in [12]. For
scaled problems, the number of unknowns (N) scales as the square of
the number of processors because the dominant storage is the dense
matrix containing N2 entries. This matrix will be divided among the
processors.

Beginning with the geometry section of the code, it was found that
the relative amount of computation needed to sort the mesh data was
small, even for the largest problems attempted to date. This algorithm
was not paraIlelized, and as seen from Fig. 1.5, the relative time needed
to accomplish the geometry algorithm is quite small. In the matrix fill
portion of PATCH, the EFIE is discretized into a linear set of equa-

1.6 Integral Equation Decomposition 17

CPU TIME BREAKDOWN OFPATCH BY COMPONENTS
INTEL 186064 NODE GAMMA

J

60:

50;
~
E

mmmmm’mmmmmmmmmmmmwmm’

%’
f= 30:

wmmmmmmsmmm’mmmmmmmmmmmm
m“.”m.m”m”m.mmm*m”m’m*m’m”mm

3
n .
o 20

10
m ■ m m % m m m 8 ■

m = ■

o
8b4 17’80 35)7 7;69

UNKNOWNS

1 4— PROCESSORS — 1 6 64

I ❑ FIELDS ❑ SOLVE H FACTOR ❑ FILL ■ GEOMETRY
I

Figure 1.5 Breakdown of the PATCH code by components.

tions as described above. Because there arc N2 matrix entries to be
calculated and the problem scales as lV2, the time to fill the matrix
stays constant as the problem size increases (Fig. 1.5). No communi-
cation overhead is produced because all the mesh data reside in each
processor and none of the data involved in the computations need bc
shared between the matrix entries.

A parallel LU decomposition algorithm is used in the first stage
of solving the linear system. The decomposition algorithm used is a
row-based variant of Gaussian elimination with partial pivoting. In the
parallel algorithm, rows of the matrix are wrapped onto the processors.
The first row resides in the first processor, the second in the second,
and so on until the nprocs row resides in the last processor of the
hypcrcube (nprocs is the number of processors in USC). The next row

18 1, Computer Electromagnetic and Supcrcomputer Architecture

is stored in the first processor and the “card dealing” continues. This
method allows for nearly tot al load balance any processor will have
at most one extra row compared with all other processors. Since LU
decomposition is an N3 algorithm, the execution time grows as N for
scaled problems, as is seen in Fig. 1.5. Since this is the dominant part of
the code at this point in its development, work cent inues on improving
the decomposition algorithm. Use of block algorithms, as well as use of
assembly-coded basic linear algebra subroutines (I JLAS), is expected
to greatly improve the performance [18].

To complete the solution, parallel forward reduction and backward
substitution algorithms are used. Because the time needed to complete
these algorithms is quite small, this part of the code (SOLV13) is lost
between the FACTOR and FH31,DS components in Fig. 1.5. The com-
ponent labeled FIIH,DS in Fig. 1.5 corresponds to the calculation of
electric and magnetic fields after the surface currents have been found.
Since this calculation is an order N process, the relative time decreases
with scaled problems of increasing size.

1.7 Software-Assisted Decomposition

From the above outline of decomposition methods for three com-
putational techniques, it is recognized that a systematic approach to
dividing the data can be readily found. Steps of decomposition involve
first defining the problem-dependent data, e.g., the spatial field values
or dense matrix enties, and then decomposing those data, striving to
achieve a load balance of storage and computation while minimizing
the amount of data communicated between processors. It has been a
goal in the computer science community to automate this process by
crest ing “ parallelizing compilers” that accomplish the above steps in-
dependent of the user or class of physical problem being solved. This
would be accomplished by decomposing arrays and loops in the code
onto the given machine. A more realistic approach [19] begins with the
premise that the compiler cannot accomplish the task independent of
the user and class of physical problem. Rather, the compiler will “as-
sist” the user in problem decomposition by supplying a small set of
constructs that allow the mapping of problem data to the machine in
use. The constructs are extensions to Fortran declaration statements
that define arrays, as well as extensions to loops, that will operate on

1,8 Summary 19

the decomposed data. Knowing the physical problem being simulated
and the structure of data resulting from the algorithm in USC, the user
can choose the constructs needed. Low-level communication routines
that are invisible to the user implement necessary data transfer be-
tween processors, hopefully in an efficient manner.

1.8 Summary

This paper has reviewed the decomposition of three solutions to
Maxwell’s equations. Different decomposition properties were exhib-
ited. The FDTI) and integral equation solutions exhibit regular prob .
lem domains, while the finite element solution illustrates an irregular
domain. The FDTD and finite element solutions lead to a spatial d~
main decomposition since the data are either the spatial field variables,
as in the FDTD solution, or directly related to the spatial grid, as in the
finite element solution. The integral equation solution is an example of
data decompmition where the data are derived from the spatial grid.
In all cases, decomposition onto a parallel machine strives to create a
balance of data storage and computation among the processors, while
minimizing communication overhead. For the three solution methods
presented, this balance can be attained, achieving relatively high de-
grees of efficiency.

Acknowledgements

This overview drew on a number of sources of information, The au-
thor gratefully acknowledges interactions with the parallel processing
groups at the Jet Propulsion Laboratory, and specifically the group on
Research in Parallel Computational 131ectromagnetics, including Rob
Ferraro, Jean Patterson, Paulette Liewer, Jay Parker, and Jon Pax-tee.

The research described in this paper was carried out by the Jet
Propulsion Laboratory, California Institute of Technology, under a con-
tract with the National Aeronautics and Space Administration.

20 1. Computer Electromagnctics and Supcrcomputcr Architecture

References

(1] Flynn, M., “Some computer organizations and their effectiveness,”
IEEE ZTans Comput, C-21, 948-960, 1972.

[2] Ilongarra, J. J., I. S. Duff, D. C. Sorenson, and H. A. van der Vorst,
“Solving linear systems on vector and shared memory computers,”
Philadelphia, Pennsylvania, SIAM, 1991.

[3] Kuck, D. J., E. S, Davidson, D. H. Lawrie, and A. Ii. Samch,
‘(Parallel supcrcomputing today and the cedar approach,” Sci-
ence 231, 967–974, 1986.

[4] Ilillis, W.D., and G. L. Steele, Jr., “Data parallel algorithms,”
Comm ACM 29, 1170-1183, (1986).

[5] Fox, G., M. Johnson, G, Lyzenga, S. Otto, J. Salmon, and D.
Walker, “Solving problems on concurrent processors,” Englcwood
Cliffs } New Jersey: Prentice Hal], 1988.

[6] Yee, K.S., “ Numerical solution of initial boundary value problems
involving Maxwell’s equations in isotopic media,” ZEEE 7&ans An-
tennas Propag., AP-14, 302307, 1966.

[7] Taflove, A., K. R., Umashankar, and T. G., Jurgcns, ‘Radar cross
section of general three dimensional scatterers)” IEEE ITans A 71-

knnas Propag., AP-33, 662-666, 1985.

[8] Calalo, R.H.; T., Cwik, W. A. Imbriale, N. Jacobi, N., P. C. Liewcr,
T. G. Lockhart, G. A. Lyzenga, and J. Patterson, “Hypcrcubc par-
allel architecture applied to electromagnetic scattering analysis,”
IEEE ~ns. Magn., 25, 2898-2900, 1989.

[9] Calalo, R.Il., W. A. Imbrialc, N. Jacobi)P. C. Liewer, T. G. Imck-
hart, G. A. Lyzenga, J. R. I.yens, F. Manshadi, and J. Patterson,
“IIypercube matrix computation task: report for 1986-1988,” JPL
Publication, 88–31, Pasadena, California: Jet Propulsion Labora-
tory, 1988.

[10] Silvestcr, P. P., and R. L. Ferrari, Hnitc Elements for Electrical
Engineers, Cambridge, U. K., Cambridge University Press, 1990.

[11] IIuff, 1. S., A. M. Erisman, and J. K. hid, Dirccf, Methods for
Sparse Matrices, Oxford, U. K,, Clarcdon Press, 1986.

Rofcrcnccs 21

q [12]

[13]

[14]

15]

16]

[17]

18]

19]

Cwik, T., R. D. Ferraro, R. Hodges, N. Jacobi, P. C. Liewer, T.
G. Lockhart, G. A. Lyiinga, J. W. Parker, J. Partee, J. Pat-
terson, and D. A. Simoni, “Hypercube matrix computation task:
research in parallel computational electromagnet its)” Report for
1989-1990. JPL Publication, 91–25, Pasadena, California: Jet
Propulsion Laboratory, 1991.

Osterby, O., and Z. Zlatev, “Direct methods for sparse matrices,”
Goos, G., and J. Hartmanis, (editors): I.ccture Notes in Computer
science, Berlin, Germany, Springer-Verlag, 1983.

Kushner, J.K., E. Castro-k-on, and M. L. Barton, “The ProSolver-
SES library, a skyline solver for the iPSC/860,” The Sixth Dis-
tributed Memory Computing Conference Proceedings, Portland,
379382, 1991.

Hennigan, G.I,., S. Castillo, E. Hensel, “Using Domain decomposi-
tion to solve symmetric positive-dcflnite systems on the hypcrcubc
computer,” Int. J. Num. Meth, Engng., in press,

Johnson, W., D. R. Wilton, and R. M. Sharpc, “Modeling scat-
tering from and radiation by arbitrary shaped objects with the
electric field integral equation triangular surface patch code,” l%c-
iromagnetics, 10, 41-64, 1990.

Rae, S. M., D. R. Wilton, and A. W., Glisson, “Electromagnetic
scat tcring by surfaces of arbitrary shape,” IEEE 1%.ms. Antennas
FYopag., 30, 409-418, 1982.

van de Gcijn, R., “Massively parallel LINPACK benchmark on
the Intel Touchstone DELTA and iPSC/860 systems,” TR-91–
28, Austin, Texas: Department of Computer Science, University
of Texas, 1991.

Fox, G., S. lIiranadani, K. Kennedy, C. Koelbel, U. Krcmcr, C.
W. Tscng, M. Y. Wu, “Fortran-D language specification,” Rice
COMP, TR90–141, Houston, Texas, Department of Computer
Science, William Marsh Rice University, 1991.

